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Background

The Julich UNified Infrastructure for Quantum computing (JUNIQ) [1] is a uniform quantum computing Platform as a Service (QC-PaaS) operated at the Julich
Supercomputing Centre (JSC). We present the architecture and usage of qgiskit-jugcs [2], a Python library designed to provide users of JUNIQ to access the
Julich Universal Quantum Computer Simulator (JUQCS) [3], a massively parallel emulator of gate-based quantum computers which has set the world record of
simulating a universal quantum computer with 48 qubits. This work enables QC users with no High Performance Computing (HPC) experience to easily simulate
large quantum computing circuits remotely on HPC systems through the widely used Qiskit interface.

Architecture
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Fig. 1 Architecture of the cloud access to JUQCS via JUNIQ.
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JUNIQ cloud is a JupyterHub environment, users can register via JuDoor [4].
Transfer of input and output data from/to JUNIQ cloud and execution of the
workflow on HPC system is enabled by the grid middleware technology
UNICORE (Uniform Interface to Computing Resources) [5]. The service node
between JUNIQ cloud and HPC system is responsible for user authentication,
job preparation and submission, and result retrieval.

Interfacing with Qiskit

qiskit giskit ;
providers
I | l E
5 providerV1 BackendV2 JobV1 :
JugcsProvider JugcsBackend JugcsJob
: allocate() submit()
: UNIQORE < run() / result()
! registry :
: deallocate() :
5 Filter 5
| QasmSimulator StatevectorSimulator |
giskit-jugcs

Fig. 2 Interfacing the JUNIQ cloud and JUQCS with Qiskit. Notably, three
new methods for the class JugcsBackend (derived from class BackendV2
that Qiskit provided) have been created to interact with UNICORE, hence
leveraging the architecture.

Demonstration

import qiskit
from juqcs.provider import JuqcsProvider

Credentials are valid! You may start using JUQCS now.

nqubits = 40
circuit = giskit.QuantumCircuit(nqubits)
circuit.h(0)
for i in range(1, nqubits):

circuit.cx(i - 1, i)
circuit.measure_all()

provider = JuqcsProvider() ~
backend = provider.get_backend('qasm_simulator"')

backend.allocate(minutes=30, max_qubits=nqubits)

Please choose one of the following projects to charge the allocation to: ['jqctst
02', 'jqctst@l']. Get rid of this prompt by actively passing a project string to

the "allocate" method. jqctst0l

Trying to allocate compute resources under project jqctst@l, this may take a few

minutes... (please do not abort, otherwise the allocation may be lost and the com
pute time wasted).

Resource allocation #12359303 of 40 qubits available until 2023-10-13 12:51:05.

job = qgiskit.execute(circuit, backend, shots=5000, seed=42) N ——

Submitting circuits for simulation, this may take a few minutes...

job.status()

<JobStatus.DONE: 'job has successfully run'>

result = job.result()
result.get_counts()

{'1111111111111111111111111111111111111111": 2471,
'0000000000000000000000000000000000000000"' : 2529}

backend.deallocate() N —

Trying to deallocate compute resources, this may take a few minutes...

Allocation #12359303 revoked.

Fig. 3 Demonstration of accessing JUQCS via JUNIQ cloud, framed cells
indicate the key usage paradigm of qgiskit-jugcs. In this example, we submit a
circuit consisting of 40 qubits with 5000 shots using the gasm_simulator
backend running on 128 compute nodes (JURECA-DC CPU patrtition).
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