()soLip

Quantum Computer in the Solid State

JUNIQ Cloud Provides Access to Quantum Computer Emulator JUQCS

Carlos Gonzalez Calaza 2, Cong Luo ', Hans De Raedt 3, Kristel Michielsen 1.2

1 Institute for Advanced Simulation, Julich Supercomputing Centre, Forschungszentrum Julich, D-52425 Jilich, Germany

2 RWTH Aachen University, D-52056 Aachen, Germany

3 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

www.g-solid.de

Background

The Julich UNified Infrastructure for Quantum computing (JUNIQ) [1] is a uniform quantum computing Platform as a Service (QC-PaaS) operated at the Julich
Supercomputing Centre (JSC). We present the architecture and usage of qgiskit-jugcs [2], a Python library designed to provide users of JUNIQ to access the
Julich Universal Quantum Computer Simulator (JUQCS) [3], a massively parallel emulator of gate-based quantum computers which has set the world record of
simulating a universal quantum computer with 48 qubits. This work enables QC users with no High Performance Computing (HPC) experience to easily simulate
large quantum computing circuits remotely on HPC systems through the widely used Qiskit interface.

Architecture

JUNIQ Cloud (JupyterHub with JuDoor infrastructures)

Authentication Circuits definition | Job submission Postprocessing
A
—UNICORE TSI service [« — [«»{UNICORE TSI service
2
— S
O Validation 5 .
IS _ i SLURM] O
- User delegation 2 0
s Resources = Modules <« ©
> > : < O
o allocation = UGS q
N <«
@ Lyl submit simulation = =

Jureca-DC CPU partition
(128 CPU, 512 GB RAM)

Fig. 1 Architecture of the cloud access to JUQCS via JUNIQ.

> Deallocation

JUNIQ cloud is a JupyterHub environment, users can register via JuDoor [4].
Transfer of input and output data from/to JUNIQ cloud and execution of the
workflow on HPC system is enabled by the grid middleware technology
UNICORE (Uniform Interface to Computing Resources) [5]. The service node
between JUNIQ cloud and HPC system is responsible for user authentication,
job preparation and submission, and result retrieval.

Interfacing with Qiskit

qiskit giskit ;
providers
I | l E
5 providerV1 BackendV2 JobV1 :
JugcsProvider JugcsBackend JugcsJob
: allocate() submit()
: UNIQORE < run() / result()
! registry :
: deallocate() :
5 Filter 5
| QasmSimulator StatevectorSimulator |
giskit-jugcs

Fig. 2 Interfacing the JUNIQ cloud and JUQCS with Qiskit. Notably, three
new methods for the class JugcsBackend (derived from class BackendV2
that Qiskit provided) have been created to interact with UNICORE, hence
leveraging the architecture.

Demonstration

import qiskit
from juqcs.provider import JuqcsProvider

Credentials are valid! You may start using JUQCS now.

nqubits = 40
circuit = giskit.QuantumCircuit(nqubits)
circuit.h(0)
for i in range(1, nqubits):

circuit.cx(i - 1, i)
circuit.measure_all()

provider = JuqcsProvider() ~
backend = provider.get_backend('qasm_simulator"')

backend.allocate(minutes=30, max_qubits=nqubits)

Please choose one of the following projects to charge the allocation to: ['jqctst
02', 'jqctst@l']. Get rid of this prompt by actively passing a project string to

the "allocate" method. jqctst0l

Trying to allocate compute resources under project jqctst@l, this may take a few

minutes... (please do not abort, otherwise the allocation may be lost and the com
pute time wasted).

Resource allocation #12359303 of 40 qubits available until 2023-10-13 12:51:05.

job = qgiskit.execute(circuit, backend, shots=5000, seed=42) N ——

Submitting circuits for simulation, this may take a few minutes...

job.status()

<JobStatus.DONE: 'job has successfully run'>

result = job.result()
result.get_counts()

{'11": 2471,
'00"' : 2529}

backend.deallocate() N —

Trying to deallocate compute resources, this may take a few minutes...

Allocation #12359303 revoked.

Fig. 3 Demonstration of accessing JUQCS via JUNIQ cloud, framed cells
indicate the key usage paradigm of qgiskit-jugcs. In this example, we submit a
circuit consisting of 40 qubits with 5000 shots using the gasm_simulator
backend running on 128 compute nodes (JURECA-DC CPU patrtition).

Acknowledgements:

We thank Fengping Jin, Piet Hein van den Heuvel, Dennis Willsch and Jhon Alejandro Montanez-Barrera for
the contributions to the design of the architecture, as well as for the thorough testing of the implementation
shown in this poster. C.G.C and C.L. acknowledge support from the project JUNIQ that has received funding
from the German Federal Ministry of Education and Research (BMBF) and the Ministry of Culture and Science
of the State of North Rhine-Westphalia, as well as the project QSolid that has received funding from the
German Federal Ministry of Education and Research (BMBF) within the framework programme “Quantum
technologies — from basic research to market”. C.G.C. acknowledges support from the project OpenSuperQ
(820363) of the European Quantum Flagship.

References:
[1] JUNIQ: https://juniq.fz-juelich.de

[2] qiskit-juqcs: https://jugit.fz-juelich.de/qip/junig-platform/qiskit-jugcs/

[3] H. De Raedt et al., Massively parallel quantum computer simulator, eleven years later, Comput. Phys. Commun. 237, 47 (2019)
[4] JuDoor: judoor.fz-juelich.de/

[5] UNICORE: https://www.unicore.eu/

SPONSORED BY THE

% Federal Ministry
45\ of Education
and Research

The QSolid project acknowledges the support of the Federal Ministry of Education and Research (BMBF) within the framework programme
“Quantum technologies — from basic research to market” (Grant No. 13N16149)

