
The QSolid project acknowledges the support of the Federal Ministry of Education and Research (BMBF) within the framework programme
“Quantum technologies – from basic research to market” (Grant No. 13N16149)

www.q-solid.de

Background

The Jülich UNified Infrastructure for Quantum computing (JUNIQ) [1] is a uniform quantum computing Platform as a Service (QC-PaaS) operated at the Jülich
Supercomputing Centre (JSC). We present the architecture and usage of qiskit-juqcs [2], a Python library designed to provide users of JUNIQ to access the
Jülich Universal Quantum Computer Simulator (JUQCS) [3], a massively parallel emulator of gate-based quantum computers which has set the world record of
simulating a universal quantum computer with 48 qubits. This work enables QC users with no High Performance Computing (HPC) experience to easily simulate
large quantum computing circuits remotely on HPC systems through the widely used Qiskit interface.

Demonstration

References:

[1] JUNIQ: https://juniq.fz-juelich.de

[2] qiskit-juqcs: https://jugit.fz-juelich.de/qip/juniq-platform/qiskit-juqcs/

[3] H. De Raedt et al., Massively parallel quantum computer simulator, eleven years later, Comput. Phys. Commun. 237, 47 (2019)

[4] JuDoor: judoor.fz-juelich.de/

[5] UNICORE: https://www.unicore.eu/

Carlos Gonzalez Calaza 1,2, Cong Luo 1, Hans De Raedt 3, Kristel Michielsen 1,2

1 Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
2 RWTH Aachen University, D-52056 Aachen, Germany
3 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

Interfacing with Qiskit

JUNIQ Cloud Provides Access to Quantum Computer Emulator JUQCS

Acknowledgements:

We thank Fengping Jin, Piet Hein van den Heuvel, Dennis Willsch and Jhon Alejandro Montanez-Barrera for
the contributions to the design of the architecture, as well as for the thorough testing of the implementation
shown in this poster. C.G.C and C.L. acknowledge support from the project JUNIQ that has received funding
from the German Federal Ministry of Education and Research (BMBF) and the Ministry of Culture and Science
of the State of North Rhine-Westphalia, as well as the project QSolid that has received funding from the
German Federal Ministry of Education and Research (BMBF) within the framework programme “Quantum
technologies – from basic research to market”. C.G.C. acknowledges support from the project OpenSuperQ
(820363) of the European Quantum Flagship.

Architecture

JUNIQ cloud is a JupyterHub environment, users can register via JuDoor [4].
Transfer of input and output data from/to JUNIQ cloud and execution of the
workflow on HPC system is enabled by the grid middleware technology
UNICORE (Uniform Interface to Computing Resources) [5]. The service node
between JUNIQ cloud and HPC system is responsible for user authentication,
job preparation and submission, and result retrieval.

qiskit

qiskit-juqcs

qiskit

providers

providerV1

JuqcsProvider JuqcsBackend

BackendV2

QasmSimulator StatevectorSimulator

JobV1

JuqcsJob
allocate()
run()

deallocate()

submit()
result()

Filter

UNICORE
registry

Fig. 2 Interfacing the JUNIQ cloud and JUQCS with Qiskit. Notably, three
new methods for the class JuqcsBackend (derived from class BackendV2
that Qiskit provided) have been created to interact with UNICORE, hence
leveraging the architecture.

JUNIQ Cloud (JupyterHub with JuDoor infrastructures)

UNICORE TSI service

Authentication

Resources
allocation

Submit simulation

Deallocation

U
N

IC
O

R
E registry (FZJ)

Validation

User delegation

Se
rv

ic
e

no
de

UNICORE TSI

SLURM

Modules

H
PC

 c
lu

st
er

JUQCS

Circuits definition Job submission Postprocessing

Jureca-DC CPU partition

(128 CPU, 512 GB RAM)

UNICORE TSI service

Fig. 1 Architecture of the cloud access to JUQCS via JUNIQ.

Fig. 3 Demonstration of accessing JUQCS via JUNIQ cloud, framed cells
indicate the key usage paradigm of qiskit-juqcs. In this example, we submit a
circuit consisting of 40 qubits with 5000 shots using the qasm_simulator
backend running on 128 compute nodes (JURECA-DC CPU partition).

Resource deallocation

Circuit submission

Provider / Backend instantiation, resource allocation

Importing / Authentication

